A Supersingular Congruence for Modular Forms
نویسنده
چکیده
Let p > 3 be a prime. In the ring of modular forms with q-expansions defined over Z(p), the Eisenstein function Ep+1 is shown to satisfy (Ep+1) p−1 ≡ − −1 p ∆ 2−1)/12 mod (p, Ep−1). This is equivalent to a result conjectured by de Shalit on the polynomial satisfied by all the j-invariants of supersingular elliptic curves over Fp. It is also closely related to a result of Gross and Landweber used to define a topological version of elliptic cohomology.
منابع مشابه
Hecke Operators for Weakly Holomorphic Modular Forms and Supersingular Congruences
We consider the action of Hecke operators on weakly holomorphic modular forms and a Hecke-equivariant duality between the spaces of holomorphic and weakly holomorphic cusp forms. As an application, we obtain congruences modulo supersingular primes, which connect Hecke eigenvalues and certain singular moduli.
متن کاملModular invariance, modular identities and supersingular
To every k-dimensional modular invariant vector space we associate a modular form on SL(2,Z) of weight 2k. We explore number theoretic properties of this form and found a sufficient condition for its vanishing which yields modular identities (e.g., Ramanujan-Watson’s modular identities). Furthermore, we focus on a family of modular invariant spaces coming from suitable two-dimensional spaces vi...
متن کاملFinite Index Subgroups of the Modular Group and Their Modular Forms
Classically, congruence subgroups of the modular group, which can be described by congruence relations, play important roles in group theory and modular forms. In reality, the majority of finite index subgroups of the modular group are noncongruence. These groups as well as their modular forms are central players of this survey article. Differences between congruence and noncongruence subgroups...
متن کاملThe Arithmetic Subgroups and Their Modular Forms
Arithmetic subgroups are finite index subgroups of the modular group. Classically, congruence arithmetic subgroups, which can be described by congruence relations, are playing important roles in group theory and modular forms. In reality, the majority of arithmetic subgroups are noncongruence. These groups as well as their modular forms are central players of this survey article. Differences be...
متن کاملExperimental finding of modular forms for noncongruence subgroups
In this paper we will use experimental and computational methods to find modular forms for non-congruence subgroups, and the modular forms for congruence subgroups that they are associated with via the Atkin–Swinnerton-Dyer correspondence. We also prove a generalization of a criterion due to Ligozat for an eta-quotient to be a modular function.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998